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Many hippocampal pyramidal neurons in rats are selectively activated at  specific places in the 
environment. We present a network model for the CA3 area of the hippocampus. The network 
produced place selective activity even when the external sensory input was broadly tuned and 
noisy. The model predicts that the place fields should be nonuniformly distributed, clustering 
in the places where the synaptic interactions between neurons is strongeest. This may occur at  
locations of special significance, such as locations where there has been food in the past. 

1. Introduct ion 

The place fields of rat hippocampal cells have been extensively studied ' 1 ' .  Recently, it has 
become possible to record from over one hundred hippocampal neurons simultanesusly 2.  There 
is sufficient information in these cells to encode the position of the animal in its environment, 
and thus place cells could be involved with some aspects of navigation 2.  However, the evidence 
that these neurons are in fact used for navigation is not convincing and there are alternative 
explanations for the place fields 3. 

The activity of the place cells in the hippocampus is not simply a direct reflection of sensory 
inputs. A place cell can remain firing when the rat is in the appropriate location for some time 
after the removal of visual cues, or switching off the lights 4 1 5 .  Furthermore, the positions of the ' 
place fields in a given environment can be also modified by changing the behavior of the rat '. 
Therefore, the neurons represent a more abstract set of relationships between sensory cues and 
the past history of the rat in a particular environment. 

In this paper, we describe a model for the CA3 region of the hippocampus and focus on the 
structure of the stable attractors of the network. The results of the model lead to a number of 
testable predictions. 

2. The model 
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The CA3 region of rat hippocampus receives input from the perforant pathway from the 
entorhinal cortex directly and indirectly, from the dentate region of the hippocampus. The 
pyramidal neurons in the hippocampus form recurrent excitatory collaterals. This network 
were modeled by a set of neurons labeled by the position of their place fields, xi ,  as would be 
determined by external sensory input; that is, the location in the environment where the cell is 
most strongly activated by sensory input. The model is based on the mean-field approximation 
in which only the average firing rates of the neurons enter into the model: 

dr; - 
dt 

= -ri + g(Cj  J i jr j  + I;) 

where r; is the average spiking rate of the neuron i, I; is it's external sensory input, g ( x )  is 
the gain function of neurons, Jij is the strength of the synaptic coupling between the neurons i 
and j at locations x; and x j  respectively. The excitatory connections in the model are mainly 
local and the coupling matrix Jij is a gaussian function of the distance between their place 
fields centers. The uniform inhibitory inputs J1 can be considered a global feedback inhibition. 
For simplicity, we used a semi-linear neuronal gain function of the form g ( h )  = 0 for h < T, 
g ( h )  = ,B(h - T )  for T < h 5 T +,&', and g ( h )  = 1 otherwise. The sensory input I; reflects 
the position of the place field before learning, and is assumed to be a smooth function around 
the position: 

where xo is the current position of the rat in the environment. Thus, the cell receives the 
maximal input when the rat is in the center of it's place field: x; = xo. The place specificity 
of the external input is described by two parameters: A,  the strength of modulation, and 1, the 
width of tuning. 

Similar models have been used to study for the population vector coding of the movement 
direction in motor cortex of monkey and the orientational selectivity in visual cortex in '. 

Note that xi are determined by the external input only, and thus do not represent the true 
position of the place fields after learning; that is, the matrix of synaptic coupling strengths 
Jij is learned. The actual form of the place field is determined by the detailed structure of 
this matrix which may depend on the manner in which the rat explored the environment. It 
should also be noted that the position x; is not simply related to the position of the cell in the 
hippocampus. There is no evidence for a topographic map in the hippocampus and cells with- 
overlapping place fields may be far apart. 

3. Distribution of the place fields 

In this paper, we model a one-dimensional environment. Let x be the distance from one end 
of a linear maze. Consider first an ideal case where the initial place fields xi are positioned 
equidistantly over the length of the environment. Then, from Eqs. 1, the synaptic coupling 
matrix is translational invariant and Jij is only a function of i - j. 

For a uniform input, X = 0, the network had a set of stable attractor states, all with the 
same shape, as determined by the parameters of the interactions and gain function, centered 
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Figure 1: Firing rate of all of the neurons in the network in one of the stable states. Each 
neuron i is labeled by it's corresponding x;. 

around each position x;. An example of such attractor is shown in the Fig. 1. Since there were 
no barriers between nearby attractors, each of them was only marginally stable. The particular 
state of activation therefore depends entirely on the initial activation pat tern. In practice, the 
external input has some variation and the actual position of peak activation would determined 
by the peak of the input; that is, by the position of the rat xo. However, if X is not too large, 
the shape of the place field was not strongly affected by 'the input, which served mainly to select 
the right attractor. While the animal moves through the environment, the peak of the input 
moves accordingly through the network, causing the activity to  shift continuously from one 
attractor to  another. As a consequence, there should observe a uniform distribution of place 
fields throughout the environment. 

This highly idealistic situation is unlikley to occur since the attractors are only marginally 
stable and any inhomogeneity in the distribution of the original place field centers, or in synaptic 
coupling parameters, should lead to their rearrangement. In fact, instead of having a large set 
of attractors, one for each neuron, there was a much smaller number of attractors, concentrated 
in the regions of the network with a higher density of place fields or higher synaptic strengths. 
For example, we considered a network of 100 neurons, as described by Eqs. 1, with uniform 
but random distribution of x;. For a uniform external input, X = 0, we solved the equations for 
100 sets of initial conditions where the activation was concentrated around one of the neurons. 
All of the final solutions are shown in Fig. 2. 

Instead of having one attractor centered on each neuron, the network had only 3 attractors at 
those locations where the density of place fields was highest. Each collective attractor resulted 
from the collapse of many others and thus had a large basin of attraction; that is, the attractor . 
could be reached from many initial states of activation. The same collapse occured when there 
was an inhomogeneity in the synaptic parameters (in fact, these two cases are equivalent, since 
the positions of the fields x; are only relevant for determining the synaptic strengths (see 1). 
This could occur if the synaptic strengths between the neurons with nearby place fields are 
reinforced while an animal explores its environment. 

The situation is somewhat more complicated when the network received a nonuniform input 
with non-zero X,  (as when the rat moves through the environment). Some of the attractors 
differentiated by splitting from a collective attractor, as shown in Fig. 3. However, even in this 
case there was a considerable discontinuity in the activity as the input activity sweept across 
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Figure 2: Superposition of the activity states of the network with uniform input and initial 
conditions around each of the neurons. 
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Figure 3: The same as in Fig. 2 with modulated input: X = 0.1. 

4. Predic t ions  of t h e  model  

What would be the implication of this simple model for the properties of the place cells as 
revealed by multiunit recordings? First, the distribution of the place fields, instead of being 
uniform over the environment, should exhibit a considerable degree of clustering near the few 
places where many individual attractors collapse. This can be easily inferred from Fig. 2: 
as the input spans the part of the network corresponding to the basin of attraction of one of 
the collective attractors, the activity of the network almost remains fixed, implying that all-of 
the neurons participating in this attractor have almost identical (and broad) place fields with 
different average firing rates. In multiunit recordings, one should see that, instead of smoothly 
varying, the activity in the populations of cells should jump from one group of neurons to 
another one as the rat crosses the boundary between the basins of attractions of different 
attractors. Experiments are underway to test this prediction lo. 

In the model, the collapse of individual attractors into collective ones with large basins 
of attraction generally occurs in regions of increased strength of recurrent synapses. The in- 
homogeneity of recurrent synaptic couplings could result from the varying conditions in the 
environment, such as bends in the maze where the rat must turn, locations of food and other 



unique conditions. Perhaps these places require a special from the animal and passes 
them with lower speed, which may lead to increased synaptic strength through Hebbian mech- 
anisms. This possibility will be tested in a model that incorporates synaptic plasticity directly. 

The central hypothesis in the model is that place cells in the CA3 area of hippocampus result 
from the interactive dynamics of an associative network of neurons. In this model, the sensory 
input played a major role only in the initial stage of learning, during the exploration of a new 
environment. During this exploration, the learning is guided by sensory and motivational inputs 
that lead to activity in a small group of neurons for each location of the environment. During 
exploration, synaptic couplings between the neurons corresponding to adjacent locations are 
reinforced. As a result, the network acquires a set of stable states with the activation localized 
to neurons with neighboring place fields. This hypothesis could be tested by examing the effects 
of different behaviors of the animal on the locations of the place fields during their formation. 

5. Conclusions 

What is the functional role of place cells inthe hippocampus? The clustering of the place 
fields in the model in certain places of the environment could reduce the ability of these cells 
to code for the position of the animal. Because many of the place fields of cells in the model 
had the same shape, the precision with which the cells could be used to locate an animal in its 
environment would be limited to the sizes of the place fields, which were large. 

Could the activation of place cells have some other function? The place fields could sig- 
nal to the cortex of the animal the proximity of the animal to locations that had previously 
been important during exploration. Thus, instead of providing an unbiased map of space, the 
hippocampus may encode a space memory by associating the position of the animal with be- 
haviorally important events. This is is similar to the view proposed by 07Keefe and Nadel, who 
suggested that the hippocampus provides a "cognitive map'' of the environment '. 
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